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Scheme 1.Complementary Conservation of Molecular
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There are numerous examples of biologically active polycyclic

' 7
natural products that are biosynthesized by sequential cascade Hz0 csselectiveIOJ‘
cyclizations of acyclic precursors. Polycarbocyclic triterpenes such 7 & /squa,ene/ & &

as steroids are derived from squalene precutsmd polyethers
such as antibioticsmarine toxins’, and acetogenifisre derived

from polyepoxides. It is of great interest to consider the
biogenesisof the highly symmetric squalene-derived triterpene

polyethers, glabrescoll), teurilene ), and longilene peroxide
(3) (Scheme 1). Cytotoxic polyethers teuriler#® &nd longilene
peroxide 8) were isolated from the red aldaaurencia obtusa
by Kurosawa et a.and from the wood oEurycoma longifolia

by Itokawa et al’, respectively, and their stereostructures were

elucidated by X-ray crystallographic analysis. Glabrestpias
extracted from the branches and woodSgfathelia glabrescens

by Jacobs et al., and the structure was proposed by spectroscopi

methods’

Considering the familiar examples of biogenesis discussed

abovel ™ theseCs symmetric (nes) polyethers2 and 1 might
be derived fromC, symmetric ¢,l) tetraepoxide5 and hexa-

epoxide6, respectively, by sequential cascade cyclizations. On

the other hand, the nearl@, symmetric polyetheB could be
obtained via the€Cs symmetric tetraepoxidéin the same manner,

except for the discriminating enantiotopic terminal epoxides. In
this case, it may be invaluable to realize the complementary
conservation of molecular symmetry between the biogenetic

precursors and natural produc&; {/s C,). Thus, the structurally

symmetric arrays and the biogenetically unique features couple

with their biological activities have prompted a significant
synthetic effort for these polyethetdn this contribution, we
report the first enantioselective total synthesis of glabré$aod
that theC; symmetric stereostructurk originally proposed by
Jacobs et al. must be revised to the optically pbysymmetric

4

Our synthetic strategy for the proposed structure of glabrescol
(1) is based on taking its intrinsic symmetry into consideration,

and on the sequential hydroxy-directatti oxidative cyclization®-*

of acyclic bishomoallylic alcohols with vanadium catalyst and
tert-butyl hydroperoxide (TBHP) to stereoselectively construct
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guch THF rings via epoxides. In practice, our synthesis began

Wwith the readily availabl€Cs symmetric diepoxid€® correspond-
ing to the central THF ring ofl (Scheme 2). Attachment of
geranyl side chains t@ was carried out in 64% yield over two
steps to afford tetraenedi@D. Monoacetylatiot? of the diol 10
produced substratel, and set the stage for the key sequential
V-catalyzedanti oxidative cyclizations. The previous reaction
conditions for the double cyclizations reported by Shiradma
and McDonalé! required AcOH in the reaction media to promote
the in situ ring-opening of the epoxide intermediates into THF
rings. Application of similar reaction conditions using AcOH to
11 for 4—5 h resulted in incomplete termination at the epoxide

dand monocyclized intermediates along with a small amount of

dicyclized products. However, use of TFA instead of AcOH
dramatically improved the results. Optimized conditions for the
double cyclization ofLl1 (0.02 equiv VO(acag) 2.5 equiv TBHP,

2 equiv TFA, CHCI,, room temperature, 30 min) provided the
desired triTHF ethed2 as a major product in 28% yield over
two steps, together with 23% of the other minor diastereomers.
The treatment ofl2 under similar conditions gave the original
mesostructure 1'3 as the predominant product in 30% vyield.
Unfortunately, the!H and**C NMR spectra of our synthetit
were not identical with those of the natural glabrescol kindly
provided by Jacobs.
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Scheme 2.Total Synthesis of Four PossibieesoStructuresl Scheme 3.Enantioselective Total Synthesis 6§ Symmetric
and13—15* 42
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aReaction conditions: (a) TBDMSCI, imidazole, @&y, rt, 1 h, 55%;
(b) TBHP, Ti(Q-Pr), L-DET, MS 4A, CHCl,, —20°C, 4 h, 86% (98%
ee); (c) MOMCI,i-PpNEt, CH,Cl,, 0 °C—rt, 17 h, 96%; (d) BulNF,
THF, 0°C, 1 h, 98%; (e) TBHP, Ti(GPr), D-DET, MS 4A, CHCl,,
aReaction conditions: (a) geranyl phenyl sulfide, BuLi, TMEDA, THF, —25°C, 4 h, then citric acid, B#P, 85%; (j 1 M agNaOH, 1,4-dioxane,
—78°C, 1 h; (b) Na,i-PrOH, THF, reflux, 64% (2 steps); (c) A, Py, reflux, 1 h, then acidified by HCI (pH 2), reflux, 10 min, 88%; (g) MsCl,
DMAP, CHCl,, 1t, 24 h, 62%; (d) 0.02 equiv VO(acac®.5 equiv TBHP, Py, CHClp, 0°C tort, 1 h; (h) kCOs, MeOH, rt, 15 min, 75% (2 steps);
2 equiv TFA, CHCI,, rt, 30 min; (e) LiAlH;, THF, 0°C, 1 h, 28% (2 (i) a, b in Scheme 2, 65% (2 steps); (j) ¢ in Scheme 2, 50%; (k) d, e in
steps). Scheme 2, 26% (2 steps); (I) d in Scheme 2, 40%; (m) 0.05 equiv
VO(acac), 5 equiv TBHP, 2 equiv TFA, CkCl,, rt, 30 min, 18%.

Reviewing in detail the elucidation of the stereostructure of spectral characteristicdH and3C NMR, IR, MS, and HRMS)
glabrescof it appeared to us that the assignments of the relative including the CD spectrumA;e0 = +3.45 in CHCN) of the
stereochemistriesti{reo or erythrg between each THF ring syntheticd, [a]% —22.4 € 1.27, CHCY), were identical to those
revealed an ambiguit}?. Therefore, we decided to synthesize the of the natural glabrescolNe1g0 = +3.03 in CHCN).1” Thus, the
three remaining possibi@esostructuresl3—15 by utilizing the correct stereostructure of glabrescol must be revised frorshe
same synthetic strategy as thatlofPolyetherl3 was prepared  symmetric1 to the C, symmetric4 with the indicated absolute
from the diepoxid® by the same sequence of reactions as shown configuration.
in Scheme 2, except for the substitution of neryl phenyl sulfide  cgn glabrescol 4) be constructed in a single step from
for geranyl phenyl sulfide. On the other harid} and 15 were tetraenedioR3 by a two-directional double cyclization? Such a
derived from anothemesodiepoxide16,'* diastereomeric t@®, cyclization would produce four THF rings and six stereogenic
by attaching the geranyl and neryl side chains, respectively. centers. It has, indeed, been found that the double cyclizations
Disappointingly, the'H and **C NMR spectra of our synthetic  of 23 by our protocol in the presence of TFA can proceed in a
13—15were again inconsistent with those of the natural product. tyo-directional manner to providé as a major diastereomer in

Although Jacobs et al. proposedn@sastructure for glabrescol  18% yield along with fifteen other minor diastereomers in 61%
based on the optical inactivity [fft[a]p 0.0 € 0.4, CHCh)] and combined yield based on the HPLC analysis (Scheme 3).

:H

the presence of fifteen signals in tH€ NMR spectrum, the above In conclusion, we have accomplished the total synthesis of the
results cannot support anyesostructures for glabrescol. The  four possiblemesostructuresl and 13—15 and one optically
other possibilities fulfilling the criteria are that glabrescolds active C, symmetric4 of glabrescol through the key one- and

symmetric and racemic or that glabrescoldssymmetric and  two-directional double cyclizations utilizing VO(acacYBHP,
the value of the specific rotation is near zero. Thus, we embarkedand TFA, and revised the structural formdlaroposed by Jacobs

on the enantioselective total synthesis of tig symmetric et al® to 4. These results may imply that th&, symmetric
structure4 possessing the same relative stereochemistry as thatglabrescol 4) is biogenetically produced by the enantiodifferen-
of longilene peroxide 3) (Scheme 3). The allylic alcohdl9, tiated cascade cyclizations (enzymatic participation?) ofGhe
prepared by monosilylation of the known dit,*' was subjected  symmetric hexaepoxide precursdas shown in Scheme 1, and
to Sharpless asymmetric epoxidafibnsing L-DET to furnish it would be interesting to determine the absolute configuration
the epoxy alcohoR0 in high optical purity. MOM protection,  of longilene peroxide ), which possesses the same relative

desilylation, and the second epoxidation using D-DET afforded stereochemistry. The biological activities of the synthetic gla-
the diepoxide21. The THF ring formation according to Hoye’s  prescol #) and application of this synthetic strategy 3oare

procedur& was followed by diepoxidation to provide the, currently under investigation.
symmetric diepoxid@2 in high overall yield. Introduction of the
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